Nordhaus–Gaddum bounds for total domination

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Bounds on neighborhood total domination in graphs

In this paper, we continue the study of neighborhood total domination in graphs first studied by Arumugam and Sivagnanam [S. Arumugam, C. Sivagnanam, Neighborhood total domination in graphs, Opuscula Math. 31 (2011) 519–531]. A neighborhood total dominating set, abbreviated NTD-set, in a graph G is a dominating set S in G with the property that the subgraph induced by the open neighborhood of t...

متن کامل

Bounds on Global Total Domination in Graphs

A subset S of vertices in a graph G is a global total dominating set, or just GTDS, if S is a total dominating set of both G and G. The global total domination number γgt(G) of G is the minimum cardinality of a GTDS of G. We present bounds for the global total domination number in graphs.

متن کامل

Upper Bounds on the Total Domination Number

A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set in G. In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth and order.

متن کامل

Lower Bounds for Domination and Total Domination Number of Direct Products Graphs

An exact lower bound for the domination number and the total domination number of the direct product of finitely many complete graphs is given: (×i=1Kni) ≥ t + 1, t ≥ 3. Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result gives a lower bound for the domination (and the total domination) number of the direct product of tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2011

ISSN: 0893-9659

DOI: 10.1016/j.aml.2011.01.011